REDESIGN OF HIT/DIGIT/CLUSTER
STRUCTURE AND CONTAINERS

TPC Simulation Road Map

GAS SIMULATOR . READOUT SIMULATOR RAW
' Amplif READER
HITS (dedx) ELECTRONS Diff PHITS | Pad Resp DIGITS
E Gen Distort ' Pulse Gen 1
TRACKER " RECONSTRUCTOR
TRACKS s CLUSTERS
295—
N i
- :_ l'ﬂlllh,l :IllI "n"x‘lj
20—
o base/TPCParameters
o . base/TPCPadMap
A simu/TPC_PHG4Detector
presented in simulation meeting reco/TPCClusterer

https://indico.bnl.gov/conferenceDisplay.py?confld=2685

Carlos (Carlos.PerezLara@stonybrook.edu)

https://indico.bnl.gov/conferenceDisplay.py?confId=2685

Data Structure (TPC case)

Simulation Reconstruction
Edep - Transport - Pulse - Digitization Corrections - Clusterer
TPCHIT . TPCDIGIT s CLUSTER
CONTAINER CONTAINER CONTAINER
TPCHITCONTAINER TPCDIGITCONTAINER
vector<TPCHIT*> LIST[2] map<short,TPCDIGIT*> LIST[72]
TPCDIGIT : TPCCHANNEL Cluster container
vector<float> TrainOfDigits not completed yet,
TPCHIT : vHitlcvlindrical but the structure
e 1o vHit(cylindrical) TPCCHANNEL : vChannel(PadMap) | | will be a fusion of
€p_lon hit and digit
concepts
vHit vChannel
x0, x1, x2, |, trkiD id1, id2

Carlos (Carlos.PerezLara@stonybrook.edu)

Advantages of New Data Structure

e \ersatile vHit object: suitable hit coordinates (cartesian,
cylindrical, hybrid)

* Data processing from hit to digit not constrained by container
structure (e.g. layer) anymore

— For TPC it means realistic distortions (dR,dPhi,dZ) in transport
(spacecharge, ExB)

» Digits are stored in “binned” container -> local coordinates

— Reduces time for cluster finder and pattern recognition

 Map object moves from local coordinates global coordinates
(simultaneously in more than one coordinate system!)

* Way faster and weightless data handling than current
structure: it uses detector segmentation in data structure

Carlos (Carlos.PerezLara@stonybrook.edu)

List of Files [WIP]

[cperez@rcas2066 gdsimulation]S Is ROUTE/ [cperez@rcas2066 g4simulation]$ Is -R TPC/

vHit.cxx vHit.h TPC/:

vChannel.cxx vChannel.h base reco simu
TPC/base:
TPCChannel.h
TPCDigit.cxx TPCDigit.h
TPCCluster.cxx TPCCluster.h
TPCDigitContainer.cxx TPCDigitContainer.h
TPCParameters.cxx TPCParameters.h
TPCCorrections.cxx TPCCorrections.h
TPCPadMap.cxx TPCPadMap.h

TPCPadMapCylindrical.cxx TPCPadMapCylindrical.h
plotPadMapCylindrical.C

TPC/simu:

TPCHit.h

TPCCloud.h

TPCHitContainer.cxx TPCHitContainer.h
TPCDetectorSimulation.cxx TPCDetectorSimulation.h
TPC_PHG4DetectorSubsystem.cxx TPC_PHG4DetectorSubsystem.h
TPC_PHG4Detector.cxx TPC_PHG4Detector.h
TPC_PHG4SteppingAction.cxx TPC_PHG4SteppingAction.h
TPC/reco:

TPCClusterer.cxx TPCClusterer.h

once fully tested, will commit

Carlos (Carlos.PerezLara@stonybrook.edu)

ADDITIONAL MATERIAL

List of Tasks Delimited in Last Tracking Meeting

EPhenix Tracking Tasks https://indico.bnl.gov/conferenceDisplay.py?confld=2964

High Priority (Crucial for first implementation and MVTX Proposal)

Redesign hit and track structures - This is a basic building block of the project (Carlos,
Haiwang)
e Minimize coordinate transformations, cache information
o TPC coordinate map and cache (Carlos)
o Silicon case (Tony)
e TVector operations?
e SvixHit and SvtxTrack vs genfit::track and genfit::measurementOnPlane (Haiwang)
e Avoid duplication and parallel structures (Carlos)

Detector loop + hit containers - Efficient access and sorting of hits will determine performance
e Hits sorted by Layer
o TPC hit/digit/cluster structure navigation (Carlos)
o Silicon (MAPS + INTT) (Veronica)
o Overlap treatment within Si layers (later)
e Direct access by Eta-Phi ranges
o TPC coordinate map (Carlos)
o Silicon (Veronica)
e Hit <-> detector plane association (generic container design for TPC + silicon,
Haiwang + Carlos + Veronica)
e Alignment friendly implementation (keep in mind, hit needs to know which detector,
Jin)
e Material budget per layer, active vs inactive detector components

GenFit - Key element to build trajectories (Haiwang)
e Turn Kalman FEitter into Filter for pattern recognition
e Isolate tools to calculate Chi2 increment for a given hit and TrajectoryState updates
after adding a hit
e Provide easy to use getters
e |Interface to material per layer (done, Jin)

TrajectoryBuilder class - Class to pull all elements together (Christof, Haiwang)
Loop over seeds

Track propagation

Dynamic handling of track cloning and deletion

Optimization of propagation strategy

o Propagate each track to the end of the detector first vs propagating all tracks
one layer at a time
o Hit or track multiplicity may make caching more efficient in one case vs the
other
e Track scoring (Sanghoon)
o Decide if a trajectory needs to be kept or dropped based on holes in the track,
chi2 etc.

Ambiguity resolution - Necessary to keep fake rate in check and to avoid duplication
(Sanghoon)

e Check track overlaps based on shared hits

e Book keeping of hit usage. Unique hit <-> track association vs hit sharing?

e Releasing of hits from bad tracks

Carlos (Carlos.Pere

Important (Needed for performance tuning of first implementation)

Definition of final Track Quality selection(Veronica + Sourav)
e |dentify track quality criteria to protect against fakes while keeping the efficiency high
e Study impact of track quality on parameter estimation

Cluster validation -> Make optimal use of the detector information to estimate hit positions and
errors

e Fix ITT hit position from simulation (Tony)

e TPC clustering, drift parameterization (Carlos)

e Hit sharing + clustering (Sourav)

e Cluster position determination. Parameterizations? (Sourav)

Performance evaluation (Sourav, Xiaolong)
e Efficiencies, fake rates, parameter resolutions, pull distributions, biases etc.
e Preparation of efficiency, fake rate correction tables
e Higher level checks, J/Psi mass peaks, HF/b-jet observables
e CPU performance

Optimization of hough tracking for seeding (Sourav)
e Limiting PHG4HoughTransformTPC to the Sl layers (0 - 7) works but gives shaky
results

Intermediate Term (After MVTX Proposal)

Vertexing (before tracking)
e Needed to limit combinatorics in seeding step
e Later as well

Track seeding

e Use Hough to get started
e If manpower available write modular seeding code (inside out vs outside in)

Tracking Iterations to optimize Efficiency

e Find easy to identify tracks first
e Remove hits from detector to reduce combinatorics
e Go for more difficult topologies

Electron resonstruction
e Gaussian Sum Filter extension to Kalman filter

Long_Term (Before Data Taking)

Repository Cleanup
e Split Reco code from Simulation — Should be addressed after MVTX proposal

Realistic Alignment functionality -> Analyze track residuals to position detector elements
e Database with positions and alignment of detector elements
e Alignment procedures based on physics data and/or cosmics
e Millipede algorithm?

https://indico.bnl.gov/conferenceDisplay.py?confId=2964

